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The temperature dependence of the lattice parameter of Ge1−ySny alloys deposited on Si substrates has been
determined from an analysis of their x-ray reciprocal-space maps. It is found that over the range 0�y
�0.03 the alloy thermal expansivity increases by up to 20% as a function of y. This implies a strong deviation
from a linear interpolation between the end compounds since the thermal expansivities of pure Ge and �-Sn are
nearly the same. Alternative interpolation formulas based on a Debye model and a mixed Debye-Einstein
model of the phonon structure are tested and it is found that they also fail to explain the observed increase in
thermal expansivity.
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I. INTRODUCTION

The thermodynamic properties of group-IV materials—
measured more than half a century ago—still represent an
important test bed for theoretical methods, in particular,
modern ab initio approaches.1–6 One such property, the ther-
mal expansivity, has acquired particular relevance over the
past decade in the context of epitaxial growth of materials.
The difference in thermal expansivity �commonly referred to
as thermal-expansion coefficient� between the substrate and
the grown film generates stresses that affect the film’s elec-
tronic and optical properties. Such expansivity mismatches
offer some intriguing engineering opportunities. A recent ex-
ample is the use of the much larger thermal expansivity of
Ge relative to Si �5.8�10−6 versus 2.56�10−6 K−1 at room
temperature� to generate a tensile strain in Ge films that grow
relaxed on Si at high temperatures. This tensile strain, which
develops upon cooling to room temperature, lowers the band
gap and allows Ge-based detectors to offer a better coverage
of the so-called L window for telecommunications.7

The phonon-dispersion curves of the group-IV materials
Si, Ge, and �-Sn �and, to a lesser extent, diamond� scale very
well with the so-called ionic plasma frequency �
�M−1/2Vc

−1/2, where M is the atomic mass and Vc the volume
of the unit cell.8 In particular, the corresponding Debye tem-
peratures �D�Si�=645 K �Ref. 9�, �D�Ge�=347 K �Refs. 9
and 10�, and �D��-Sn�=212 K �Ref. 11� follow the same
scaling, suggesting that the thermal expansivities of the three
materials should be similarly related. Using a Debye model
for the phonons, and assuming a common Grüneisen param-
eter �=0.5, the linear thermal expansivity at the Debye tem-
perature is given by ���D�=3.81kB / �a3B�, where B is the
bulk modulus. Cohen12 has pointed out that the bulk modulus
scales as a−7/2, so that we might expect ���D��a1/2. Accord-
ing to this, the linear thermal expansivities of Si, Ge, and
�-Sn at the Debye temperature should be in a 1:1.02:1.09
ratio, but the experimental ratios are 1:1.6:1.5 �Refs. 11 and
13–16�. There are two reasons for this poor agreement with
experiment. First, as already noted by Cohen,12 the Ge bulk
modulus is anomalous in terms of his proposed scaling, its
experimental value being below the predicted one. This en-
hances the Ge thermal expansivity. Second, the average Grü-

neisen parameters at the corresponding Debye temperatures
are �Si=0.56, �Ge=0.78, and �Sn=0.79.3,5,11 This enhances
the Ge and �-Sn thermal expansivities relative to that of Si.
It might come as a surprise that the �-Sn Grüneisen param-
eter turns out be comparable to that of Ge since we might
expect �-Sn to be more anharmonic than Ge or Si. In fact, if
we consider the width/frequency ratio of the Raman peaks
for isotopically pure Si �Ref. 17�, Ge �Ref. 18�, �-Sn �Ref.
19�, we find values of 0.2% for Si and Ge, and 0.3% for
�-Sn, confirming the higher anharmonicity of the �-Sn Ra-
man mode. The average Grüneisen parameter, however, is a
weighted average of the Grüneisen parameters for all indi-
vidual phonons, some of which are negative. Thus an in-
crease in anharmonicity which disproportionally enhances
the absolute value of the negative Grüneisen parameters
might lead to a reduction in the average value.

In view of the difficulty in understanding the chemical
trends in the linear expansivity of elemental group-IV mate-
rials, predicting the compositional dependence of this prop-
erty in group-IV alloys appears to be a formidable task. From
an experimental perspective, very few detailed studies have
been published. In the case of Si1−xGex alloys, a monotonic
decrease from pure Ge to pure Si has been determined, with
a clear change in slope at x�0.85 �Ref. 20�. This corre-
sponds to the composition at which the lineup of the
conduction-band minima changes from Si-like to Ge-like.
There is no obvious way to relate the thermal expansivity to
the details of the conduction-band structure, and this puz-
zling finding remains for now an accidental coincidence.

In this paper, we report a study of the thermal expansivity
of Ge1−ySny alloys. At room temperature, the thermal expan-
sivities of Ge and �-Sn are nearly the same, and one might
expect the alloy thermal expansivity to become independent
of the Sn-concentration y. This would have important impli-
cations for device designs based on Ge1−ySny and
Ge1−x−ySixSny active layers. However, we find a strong in-
crease in the thermal expansivity as a function of y for low
Sn concentrations. We show that this anomalous result can-
not be reconciled with any simple theory of the composi-
tional dependence of the linear expansivity. We speculate
that it may be related to a softening of the alloy bulk modu-
lus or to a strong compositional dependence of the Grüneisen
parameters.

PHYSICAL REVIEW B 81, 245214 �2010�

1098-0121/2010/81�24�/245214�6� ©2010 The American Physical Society245214-1

http://dx.doi.org/10.1103/PhysRevB.81.245214


II. EXPERIMENT

A. Sample growth and characterization

GeSn films with thickness up to 1 �m are grown on Si
substrates with a nominal size of 3� in diameter via reactions
of SnD4 with Ge2H6, as described elsewhere.21 The samples
are characterized by Rutherford backscattering �RBS�,
atomic force microscopy, high-resolution transmission elec-
tron microscopy �HRTEM�, and high-resolution x-ray dif-
fraction �XRD�. The ratio of aligned versus random peak
heights in RBS spectra �	min�, which measures the degree of
crystallinity, decreases from 10% at the interface to 5% at the
surface, indicating a reduction in dislocation density across
the thickness of the film. The 5% value approaches the prac-
tical limit of �3% for a perfect Si crystal, suggesting that
most of the defects accommodating the lattice mismatch be-
tween film and substrate are confined at the interface. This is
consistent with HRTEM pictures showing essentially defect-
free films. The concentration of residual threading defects
and the mosaic spread of the crystal are improved by per-
forming for all samples three rapid-thermal annealing �RTA�
cycles of 10 s each at 650 °C. This postgrowth processing
reduces the full width at half maximum of the �004� rocking
curve.

B. Temperature dependence of the lattice constant

The temperature dependence of the lattice constant was
measured using a PANalytical diffractometer equipped with
an Anton Paar high-temperature stage. The heating was con-
ducted under inert atmosphere conditions in a dynamic flow
of ultrahigh-purity nitrogen at a 4 psi overpressure to avoid
oxidation and degradation of the films by the ambient �H2O
and O2�. At each temperature the sample was realigned using
the Si �224� reflection to correct for any drift associated with
the hot stage expansion. The samples were heated to a series
of temperatures between 30 and 600 °C. The unit-cell pa-
rameters of all GeSn films and a Ge film on Si were deter-
mined from measurements of the �004� 2
 /� peaks and
reciprocal-space maps �RSMs� of the �224� reflection. We
used for all of our thermal expansivity studies samples that
had undergone the RTA treatment described above. Figure 1
shows the room-temperature �224� RSM plot for a 1000-nm-
thick, Ge0.98Sn0.02 sample indicating that the material is
largely relaxed, as evidenced by the passage of the relaxation
line through the center of the peak.

In spite of the small residual strain, a strain correction is
necessary to obtain the film’s thermal expansivity due to the
expansivity mismatch between film and substrate. Assuming
that the strain has tetragonal symmetry, the relaxed lattice
constant for the film material at each temperature is obtained
from

a =

a� +
2C12

C11
a�

1 +
2C12

C11

, �1�

where a� is the tetragonal lattice constant in the growth plane
and a� the lattice constant perpendicular to the growth plane.

According to Eq. �1� the determination of the relaxed lattice
parameter requires a prior knowledge of the alloy elastic
moduli ratio C12 /C11 as a function of composition and tem-
perature. However, since in the limit a�→a�, Eq. �1� be-
comes independent of C12 /C11, the elastic moduli ratio need
not be known with very high accuracy whenever the differ-
ence between a� and a� is small. This is the case in our
experiments due to the low strain level, as shown in Fig. 1.
Thus we simply use C12 /C11 values for pure Ge in Eq. �1�.
We believe this is an excellent approximation for the alloy
because of the above-mentioned scaling of phonon-
dispersion curves in Si, Ge, and �-Sn �Ref. 8�, from which
ratios of elastic constants, such as C12 /C11, are expected to
have very similar values. This is experimentally confirmed22

in the case of Si�C12 /C11=0.386� and Ge�C12 /C11=0.375�
We thus expect the compositional dependence of the C12 /C11
ratio in group-IV alloys to be weak. Moreover, the tempera-
ture dependence of the C12 /C11 ratio is much weaker than
the temperature dependence of the individual elastic moduli,
and could be neglected without a significant impact on the
calculated relaxed parameters. For completeness, however,
we have fit the Ge C12 /C11 ratio from McSkimin,23 obtained
in the 70–300 K range, with a linear function of temperature,
and we extrapolate these results to the temperatures of inter-
est in this study. Thus the final expression we use is

C12

C11
= 0.37492 – 3.7 � 10−6T , �2�

where the temperature T is in Celsius. It is interesting to note
in this context that Burenkov et al. �Ref. 24� have measured
the elastic moduli of Ge within the 0–800 °C range, which
overlaps of with our measurements. Their data can be fit with
an expression of the form C12 /C11=0.338–4.5�10−6T. We
prefer the highly accurate McSkimin data, however, because
the Burenkov et al. C12 /C11 ratios have much larger fluctua-
tions. Moreover, Brillouin scattering experiments are in
much better agreement with the McSkimin elastic

FIG. 1. �Color online� High-temperature XRD plot recorded at
30 °C showing the �224� reciprocal-space maps of a fully relaxed
Ge0.98Sn0.02 film and the corresponding Si substrate.
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constants.25 Nevertheless, we emphasize that the choice of
elastic moduli sets is not critical for our purposes. The final
values of the thermal expansivity, defined as

��T� =
1

a�T�
da�T�

dT
�3�

differ by about 1�10−7 °C−1 using the two sets of elastic
moduli ratios. As we will see below, this is comparable to the
uncertainty arising from other sources of accidental errors.

As a first application of our procedure to obtain the re-
laxed lattice constants, we compared films before and after
RTA processing. We noticed that in all cases there is a
change in the state of strain in the film, from slightly com-
pressive after growth to slightly tensile after RTA. However,
the relaxed lattice constant of films before and after RTA is
the same within experimental error, confirming that thermal
cycling does not cause irreversible changes that might intro-
duce systematic errors in the thermal expansion measure-
ments.

The most accurate approach to determine ��T� from Eq.
�3� is to fit the experimental a�T� values with a polynomial in
T, from which the derivative da /dT can be trivially evalu-
ated. The linear term in the polynomial fit is dominant in the
temperature range of interest, to the extent that no deviation
from linearity can be seen, within experimental error, be-
tween room temperature and 400 °C. Small quadratic terms
become noticeable when including data up to 600 °C. How-
ever, since the accurate determination of these terms requires
cycling the temperature several times to completely rule out
any spurious contribution from Sn loss or film-substrate in-
termixing at high temperatures, we simply limit ourselves to
the linear regime T�400 °C. This temperature is much
lower than the RTA temperature so that systematic errors due
to thermal cycling are minimized. Under these assumptions
we obtain for the linear regime the approximate expression,

1

a0

da�T�
dT

= � , �4�

where a0 is taken as the lattice parameter at T=30 °C. In
Fig. 2 we plot a�T� /a0 over the 30–300 °C range.

According to Eq. �4�, the slope of these lines gives di-
rectly the average thermal expansivity between 30–300 °C.
This value is plotted in Fig. 3 as a function of the alloy
composition. For this we derive more precise values of the
composition from our measured lattice parameters at room
temperature and the published compositional dependence of
the lattice constant in Ge1−ySny alloys.26 This method is far
more sensitive to small compositional changes than the fits to
the RBS spectra used to obtain the nominal Sn concentra-
tions in Fig. 2. We see a large increase in thermal expansivity
in the alloys.

III. DISCUSSION

The linear thermal expansivity is given by27

��T� =
1

3B
�
n,q

�n�q�cnq, �5�

where B is the bulk modulus, �nq the Grüneisen parameter of
the vibrational mode of wave vector q and branch index n,
and cnq is this mode’s contribution to the specific heat. If we
replace the mode-dependent Grüneisen parameters by an av-
erage, mode-independent value, and assume a Debye model
for the phonon-dispersion curves, the thermal expansivity for
diamond-structure materials becomes

��T� =
24kB�D

a3B
� T

�D
�3

ID��D/T� , �6�

where kB is Boltzmann’s constant, a the cubic lattice param-
eter, and the Debye integral ID is given by

FIG. 2. Relaxed lattice parameter of Ge1−ySny alloys as a func-
tion of temperature. The data is normalized to the relaxed lattice
parameter at 30 °C. The slope of a linear fit to the data gives the
average thermal expansivity within the temperature range of the fit.
The compositions are obtained from fits of RBS spectra.

FIG. 3. Compositional dependence of the linear expansivity in
Ge1−ySny alloys. Circles represent experimental values extracted
from linear fits of the data in Fig. 2. The error bars correspond to
the errors in those fits. The solid line represents a linear fit of the
expansivity as a function of composition. The dashed line is a the-
oretical prediction based on the two models discussed in Sec. III,
which are undistinguishable over this narrow compositional range.
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ID�xD� = �
0

xD x4exdx

�ex − 1�2 = 24�
m=0

� 	1 − exp
− xD�m + 1��

���
k=0

4

xD�m + 1��k

k!
��
�m + 1�4. �7�

The series expansion of the integral, due to Mamedov et
al.,28 is convenient for numerical fits with Eq. �6�.

In Fig. 4 we show fits of the experimental thermal expan-
sivities of Si, Ge, and �-Sn using Eq. �6�. The agreement
with experiment is not very good, but since Eq. �6� repre-
sents the simplest possible model of the thermal expansivity,
it is instructive to attempt a prediction of the compositional
dependence of the thermal expansivity based on this ap-
proach. For this we use Vegard’s law for the lattice parameter
and we also interpolate linearly the bulk modulus, the Debye
frequency, and the average Grüneisen parameter that appear
in Eq. �6�. In order to match as close as possible the experi-
mental values at the two ends of the compositional ranges,
we use �D=0.47 for Si, �D=0.78 for Ge, and �D=0.83 for
�-Sn. The result is shown as a dashed line in Fig. 5 for the
Si1−xGex and Ge1−ySny alloys and also in Fig. 3 for Ge1−ySny
over the narrower range of our experiments.

The predicted linear expansivity is almost linear over the
entire compositional range for Si1−xGex alloys and nearly
constant for Ge1−ySny alloys �notice the very different scale
ranges in the two panels of Fig. 5� with a small negative
bowing. The results for the Ge1−ySny alloys are in sharp con-
trast with our experimental results. For Si1−xGex, the pre-
dicted compositional dependence of the expansivity does not
show any significant change in slope at x=0.85, in contrast
with the experimental reports.20

Since the Debye model is in rather poor agreement with
the experimental thermal expansivity of elemental Si, Ge,
and �-Sn, the predictions of the model for the compositional
dependence of the thermal expansivity of group-IV alloys are
unlikely to be reliable. Accordingly, we introduce a more
sophisticated model that provides a very good fit of the ther-
mal expansivity of Si, Ge, and �-Sn with a single additional
parameter. The model considers separately the longitudinal-
acoustic �LA�, the transverse-acoustic �TA�, and the optic
�opt� modes. The LA modes are treated within a Debye
model, whereas the TA and optic modes are described as two
separate Einstein oscillators,

��T� =
4kB

a3B0
�2

3
�TA��TA

T
�2 e�TA/T

�e�TA/T − 1�2

+ �LA� T

�LA
�3�

0

�LA/T x4exdx

�ex − 1�2

+ �opt��opt

T
�2 e�opt/T

�e�opt/T − 1�2� . �8�

It may seem counterintuitive to treat the TA modes in terms
of an Einstein model, but the TA phonon-dispersion curves in
tetrahedral semiconductors become very flat away from the
Brillouin-zone center,8 leading to sharp features in the pho-
non density of states. We choose the TA Einstein temperature
as

�TA = 
 �TA�X�/kB, �9�

where �TA�X� is frequency of the TA branch at the X point
of the Brillouin zone, which is observed as a prominent

FIG. 4. Circles represent the experimental linear thermal expansivity for Si, Ge, and �-Sn. The data were taken from Ref. 13 �Si�, Refs.
14, 15, and 29 �Ge�, and Ref. 16 �Sn�. The dashed lines represent fits with Eq. �6�. The adjusted values of �D for each material are indicated
in the three panels. The solid line is a fit with Eq. �8�. The corresponding adjustable parameters, �TA and �opt, are also indicated in the three
panels.

FIG. 5. Compositional dependence of the linear thermal expan-
sivity at 300 K. Squares represent experimental data from Ref. 20.
The dashed lines represents a prediction based on the Debye expan-
sivity model in Eq. �6�. The solid line is the corresponding calcula-
tion based on the mixed Debye-Einstein model of the expansivity in
Eq. �8�.
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density-of-states cusp in second-order Raman-scattering
experiments.30,31 Similarly, the maximum of the optic-
phonon density of states occurs at 90% of the zone-center
optic-mode frequency, which can be determined by first-
order Raman scattering. Accordingly, the optic Einstein tem-
perature is chosen as

�opt = 0.9 � 
 �R/kB, �10�

where �R is the first-order Raman frequency. Finally, the LA
Debye temperature is given by

�LA = �
cLA/kB��2�/a��3/��1/3, �11�

where cLA is the LA sound velocity. This velocity is direction
dependent in diamond-structure semiconductors, but we
make the isotropic approximation 2C44=C11−C12, so that all
longitudinal sound velocities reduce to cLA= �C11 /��1/2,
where � is the density. The parameters used for the three
materials are summarized in Table I.

With the Einstein and Debye temperatures so determined,
the model of Eq. �8� contains three adjustable parameters,
namely, the three Grüneisen parameters for the TA, LA, and
optic modes. However, we find that the resulting fits are not
very sensitive to the precise value of �LA, since the corre-
sponding term accounts for only one of the six phonon
branches, and its temperature dependence �particularly at
high temperatures� is not dramatically different from that of
the Einstein optic terms. Therefore, we set �LA=�opt, which
is consistent with ab initio calculations.3 The results of our
two-parameter fits are shown in Fig. 4 as solid lines and we
see that the agreement with experiment is excellent. More-
over, we notice that the above-mentioned relative Raman
widths are approximately proportional to �opt

2 , exactly as ex-
pected from anharmonicity theory,35 since the Grüneisen pa-
rameters are proportional to third-order anharmonic matrix

elements, whereas the Raman width is proportional to the
square of such matrix elements.

The extension of our mixed Debye-Einstein model to al-
loy semiconductors must take into account the fact that the
virtual-crystal approximation does not apply to optic vibra-
tions. In the case of Ge1−ySny, for example, one must include
three Einstein oscillators for Ge-Ge, Ge-Sn, and Sn-Sn vibra-
tions, rather than a single Einstein oscillator with a frequency
that changes continuously from pure Ge to pure �-Sn. As Sn
is incorporated starting from pure Ge, the lower frequency of
the Ge-Sn and Sn-Sn modes and the higher-optic Grüneisen
parameter of �-Sn might lead to an increase in the predicted
thermal expansivity relative to the prediction based on the
Debye model. We calculate the alloy thermal expansivity us-
ing Eq. �8� with three optic Einstein oscillators, each with a
relative weight given by �1−y�2�Ge-Ge�, 2y�1−y��Ge-Sn�,
and y2�Sn-Sn�. The Grüneisen parameter for the Ge-Ge and
Sn-Sn modes are taken equal to those in pure Ge and �-Sn,
and the average of these two values is taken as the Grüneisen
parameter for the Ge-Sn mode. The Raman mode frequen-
cies needed to calculate �opt=0.9� 
�R /kB are taken �in
cm−1� as36 �Ge-Ge=300–75.4x; �Ge-Sn=262.8–45.9x, and
�Ge-Sn=197 cm−1. All other quantities are linearly interpo-
lated as in the case of the Debye model. Exactly the same
approached is followed for SixGex alloys using mode fre-
quencies from Ref. 37. The results appear as solid lines in
Fig. 5. We find that the predicted thermal expansivities devi-
ate very little from the predictions of the Debye model so
that this more refined model also fails to explain the ob-
served experimental data for both alloys.

We can only speculate as to the origin of the anomalous
compositional dependence of the thermal expansivities. A
first possibility might be a breakdown of our alloy phonon
model due to the much larger atomic size differences be-
tween Ge and Sn compared with Si and Ge. Indeed, the
Raman spectrum of Ge1−ySny alloys has features that are not
found in their Si1−xGex counterparts.38 However, these fea-
tures have been explained in terms Raman selection rule re-
laxations rather than in terms of new vibrational modes, as
would be necessary to explain the anomalous thermal effects
reported here. Another possibility is a strongly nonlinear de-
pendence of the bulk modulus for alloy compositions close
to Ge, for which, as mentioned in Sec. I, the bulk modulus is
lower than predicted from scaling laws.12 However, experi-
mental results39 as well as ab initio calculations of alloy bulk
moduli26 do not seem to support large deviations from a
linear interpolation. A third possibility is a strong composi-
tional dependence of the Grüneisen parameters. A significant
volume dependence of Grüneisen parameters has been calcu-
lated for Ge �Ref. 40� and Si �Ref. 41�, and this might lead to
a compositional dependence of the alloy Grüneisen param-
eters, since bond lengths in the alloy track the average lattice
parameter.42 Kagaya et al.43 presented a model of the ther-
modynamic properties of Si1−xGex alloys based on similar
ideas. We notice in this context that Ge is anomalous not
only from the point of view of its bulk modulus, as men-
tioned above, but also because the absolute value of its TA
Grüneisen parameter is much smaller than that of Si or �-Sn
�Fig. 4�. We have used a linear interpolation of this param-
eter between the three elements, but if its value remains close

TABLE I. Fixed parameters used for the model fits to the ex-
perimental linear thermal expansivity of group-IV materials. The
corresponding Grüneisen parameters are adjustable and their fit val-
ues are given in Fig. 4.

Si Ge �-Sn

a �Å� 5.43086a 5.6568a 6.489a

B �GPa� 97.88a 75.8a 54.6a

�D �K� 645b 347b 212c

�TA �K� 217d 117e 60f

�LA �K� 734g 411g 260g

�opt �K� 673h 388h 255h

aReference 32.
bReference 9 at T=0 K.
cReference 33 at T=0 K.
dFrom Eq. �9� with data from Ref. 30.
eFrom Eq. �9� with data from Ref. 31.
fFrom Eq. �9� with data from Ref. 34.
gFrom Eq. �11� with data from Ref. 32.
hFrom Eq. �10� with data from Ref. 32.
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to that of pure Ge for Ge-rich Si1−xGex and Ge1−ySny alloys,
this might explain the observed change in slope in the com-
positional dependence of the Si1−xGex expansivity as well as
the initial increase in expansivity in Ge1−ySny alloys. Thus an
examination of alloy Grüneisen parameters via large super-
cell ab initio calculations may be the key to explaining the
puzzling results reported here.
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